166 research outputs found

    Dipolar plasma source modeling: a first approach

    No full text
    International audienceThe scaling up of conventional plasmas presents limitations in terms of plasma density, limited to the critical density, and of uniformity, due to the difficulty of achieving constant amplitude standing wave patterns along linear microwave applicators in the meter range. An alternative solution lies in the concept of distribution from one- to two-dimensional networks of elementary plasma. Each elementary plasma source consists in a permanent magnet on which microwaves are applied via an independent coaxial line [1]. The plasma is produced by the electrons accelerated at ECR (Electron Cyclotron Resonance) and trapped in the dipolar magnetic field. Large-size uniform plasmas can be obtained by assembling as many such elementary plasma sources as necessary, without any physical or technical limitations [2]. Simulation of the plasma produced by a dipolar source requires a global, self consistent, modeling of its functioning. In order to obtain results to lead a first optimization of the dipolar source, magnetostatics, microwave propagation and fast electrons trajectories (Particles in Cell (PIC) and Monte-Carlo hybrid method [3]) have been performed with Comsol Multiphysics and MatLab

    Trees over Infinite Structures and Path Logics with Synchronization

    Full text link
    We provide decidability and undecidability results on the model-checking problem for infinite tree structures. These tree structures are built from sequences of elements of infinite relational structures. More precisely, we deal with the tree iteration of a relational structure M in the sense of Shelah-Stupp. In contrast to classical results where model-checking is shown decidable for MSO-logic, we show decidability of the tree model-checking problem for logics that allow only path quantifiers and chain quantifiers (where chains are subsets of paths), as they appear in branching time logics; however, at the same time the tree is enriched by the equal-level relation (which holds between vertices u, v if they are on the same tree level). We separate cleanly the tree logic from the logic used for expressing properties of the underlying structure M. We illustrate the scope of the decidability results by showing that two slight extensions of the framework lead to undecidability. In particular, this applies to the (stronger) tree iteration in the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267

    The sextic oscillator as a Îł\gamma-independent potential

    Get PDF
    The sextic oscillator is proposed as a two-parameter solvable γ\gamma-independent potential in the Bohr Hamiltonian. It is shown that closed analytical expressions can be derived for the energies and wavefunctions of the first few levels and for the strength of electric quadrupole transitions between them. Depending on the parameters this potential has a minimum at β=0\beta=0 or at β>0\beta>0, and might also have a local maximum before reaching its minimum. A comparison with the spectral properties of the infinite square well and the β4\beta^4 potential is presented, together with a brief analysis of the experimental spectrum and E2 transitions of the 134^{134}Ba nucleus.Comment: 15 pages, 5 figures; to appear in Phys. Rev.

    Journeying through Dementia: the story of a 14 year design-led research enquiry

    Get PDF
    Consider a linear ordering equipped with a finite sequence of monadic predicates. If the ordering contains an interval of order type \omega or -\omega, and the monadic second-order theory of the combined structure is decidable, there exists a non-trivial expansion by a further monadic predicate that is still decidable.Comment: 18 page

    Recurrence properties of hypercyclic operators

    Full text link
    [EN] We generalize the notions of hypercyclic operators, U-frequently hypercyclic operators and frequently hypercyclic operators by introducing a new concept in linear dynamics, namely A-hypercyclicity. We then state an A-hypercyclicity criterion, inspired by the hypercyclicity criterion and the frequent hypercyclicity criterion, and we show that this criterion characterizes the A-hypercyclicity for weighted shifts. We also investigate which density properties can the sets N(x, U) = {n is an element of N; T-n x is an element of U} have for a given hypercyclic operator, and we study the new notion of reiteratively hypercyclic operators.This work is supported in part by MEC and FEDER, Project MTM2013-47093-P, and by GVA, Projects PROMETEOII/2013/013 and ACOMP/2015/005. The second author was a postdoctoral researcher of the Belgian FNRS.Bès, JP.; Menet, Q.; Peris Manguillot, A.; Puig-De Dios, Y. (2016). Recurrence properties of hypercyclic operators. Mathematische Annalen. 366(1):545-572. https://doi.org/10.1007/s00208-015-1336-3S5455723661Badea, C., Grivaux, S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007)Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358, 5083–5117 (2006)Bayart, F., Grivaux, S.: Invariant Gaussian measures for operators on Banach spaces and linear dynamics. Proc. Lond. Math. Soc. 94, 181–210 (2007)Bayart, F., Matheron, É.: Dynamics of linear operators, Cambridge Tracts in Mathematics, 179. Cambridge University Press, Cambridge (2009)Bayart, F., Matheron, É.: (Non-)weakly mixing operators and hypercyclicity sets. Ann. Inst. Fourier 59, 1–35 (2009)Bayart, F., Ruzsa, I.: Difference sets and frequently hypercyclic weighted shifts. Ergodic Theory Dynam. Syst. 35, 691–709 (2015)Bergelson, V.: Ergodic Ramsey Theory- an update, Ergodic Theory of Zd\mathbb{Z}^d Z d -actions. Lond. Math. Soc. Lecture Note Ser. 28, 1–61 (1996)Bernal-González, L., Grosse-Erdmann, K.-G.: The Hypercyclicity Criterion for sequences of operators. Studia Math. 157, 17–32 (2003)Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999)Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dynam. Syst. 27, 383–404 (2007)Bonilla, A., Grosse-Erdmann, K.-G.: Erratum: Ergodic Theory Dynam. Systems 29, 1993–1994 (2009)Chan, K., Seceleanu, I.: Hypercyclicity of shifts as a zero-one law of orbital limit points. J. Oper. Theory 67, 257–277 (2012)Costakis, G., Sambarino, M.: Topologically mixing hypercyclic operators. Proc. Amer. Math. Soc. 132, 385–389 (2004)Furstenberg, H.: Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, Princeton (1981)Giuliano, R., Grekos, G., Mišík, L.: Open problems on densities II, Diophantine Analysis and Related Fields 2010. AIP Conf. Proc. 1264, 114–128 (2010)Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. Studia Math. 139, 47–68 (2000)Grosse-Erdmann, K.-G., Peris, A.: Frequently dense orbits. C. R. Math. Acad. Sci. Paris 341, 123–128 (2005)Grosse-Erdmann, K.G., Peris, A.: Weakly mixing operators on topological vector spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 104, 413–426 (2010)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos, Universitext. Springer, London (2011)Menet, Q.: Linear chaos and frequent hypercyclicity. Trans. Amer. Math. Soc. arXiv:1410.7173Puig, Y.: Linear dynamics and recurrence properties defined via essential idempotents of βN\beta {\mathbb{N}} β N (2014) arXiv:1411.7729 (preprint)Salas, H.N.: Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347, 993–1004 (1995)Salat, T., Toma, V.: A classical Olivier’s theorem and statistical convergence. Ann. Math. Blaise Pascal 10, 305–313 (2003)Shkarin, S.: On the spectrum of frequently hypercyclic operators. Proc. Am. Math. Soc. 137, 123–134 (2009

    Dynamics of the Volterra-type integral and differentiation operators on generalized Fock spaces

    Full text link
    [EN] Various dynamical properties of the differentiation and Volterra-type integral operators on generalized Fock spaces are studied. We show that the differentiation operator is always supercyclic on these spaces. We further characterize when it is hypercyclic, power bounded and uniformly mean ergodic. We prove that the operator satisfies the Ritt's resolvent condition if and only if it is power bounded and uniformly mean ergodic. Some similar results are obtained for the Volterra-type and Hardy integral operators.J. Bonet was partially supported by the research projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain). M. Worku is supported by ISP project, Addis Ababa University, Ethiopia.Bonet Solves, JA.; Mengestie, T.; Worku, M. (2019). Dynamics of the Volterra-type integral and differentiation operators on generalized Fock spaces. Results in Mathematics. 74(4):1-15. https://doi.org/10.1007/s00025-019-1123-7S115744Abanin, A.V., Tien, P.T.: Differentiation and integration operators on weighted Banach spaces of holomorphic functions. Math. Nachr. 290(8–9), 1144–1162 (2017)Atzmon, A., Brive, B.: Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions, Bergman spaces and related topics in complex analysis, Contemp. Math., vol. 404, Amer. Math. Soc., Providence, RI, pp. 27–39 (2006)Bayart, F., Matheron, E.: Dynamics of Linear Operators, Cambridge Tracts in Math, vol. 179. Cambridge Univ. Press, Cambridge (2009)Bermúdez, T., Bonilla, A., Peris, A.: On hypercyclicity and supercyclicity criteria. Bull. Austral. Math. Soc. 70, 45–54 (2004)Beltrán, M.J.: Dynamics of differentiation and integration operators on weighted space of entire functions. Studia Math. 221, 35–60 (2014)Beltrán, M.J., Bonet, J., Fernández, C.: Classical operators on weighted Banach spaces of entire functions. Proc. Am. Math. Soc. 141, 4293–4303 (2013)Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999)Bonet, J.: Dynamics of the differentiation operator on weighted spaces of entire functions. Math. Z. 26, 649–657 (2009)Bonet, J.: The spectrum of Volterra operators on weighted Banach spaces of entire functions. Q. J. Math. 66, 799–807 (2015)Bonet, J., Bonilla, A.: Chaos of the differentiation operator on weighted Banach spaces of entire functions. Complex Anal. Oper. Theory 7, 33–42 (2013)Bonet, J., Taskinen, J.: A note about Volterra operators on weighted Banach spaces of entire functions. Math. Nachr. 288, 1216–1225 (2015)Constantin, O., Persson, A.-M.: The spectrum of Volterra-type integration operators on generalized Fock spaces. Bull. Lond. Math. Soc. 47, 958–963 (2015)Constantin, O., Peláez, J.-Á.: Integral operators, embedding theorems and a Littlewood–Paley formula on weighted Fock spaces. J. Geom. Anal. 26, 1109–1154 (2016)De La Rosa, M., Read, C.: A hypercyclic operator whose direct sum is not hypercyclic. J. Oper. Theory 61, 369–380 (2009)Dunford, N.: Spectral theory. I. Convergence to projections. Trans. Am. Math. Soc. 54, 185–217 (1943)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Springer, New York (2011)Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233–247 (2008)Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)Lyubich, Yu.: Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition. Studia Mathematica 143(2), 153–167 (1999)Mengestie, T.: A note on the differential operator on generalized Fock spaces. J. Math. Anal. Appl. 458(2), 937–948 (2018)Mengestie, T.: Spectral properties of Volterra-type integral operators on Fock–Sobolev spaces. J. Kor. Math. Soc. 54(6), 1801–1816 (2017)Mengestie, T.: On the spectrum of volterra-type integral operators on Fock–Sobolev spaces. Complex Anal. Oper. Theory 11(6), 1451–1461 (2017)Mengestie, T., Ueki, S.: Integral, differential and multiplication operators on weighted Fock spaces. Complex Anal. Oper. Theory 13, 935–95 (2019)Mengestie, T., Worku, M.: Isolated and essentially isolated Volterra-type integral operators on generalized Fock spaces. Integr. Transf. Spec. Funct. 30, 41–54 (2019)Nagy, B., Zemanek, J.A.: A resolvent condition implying power boundedness. Studia Math. 134, 143–151 (1999)Nevanlinna, O.: Convergence of iterations for linear equations. Lecture Notes in Mathematics. ETH Zürich, Birkhäuser, Basel (1993)Ritt, R.K.: A condition that lim⁡n→∞n−1Tn=0\lim _{n\rightarrow \infty } n^{-1}T^n =0. Proc. Am. Math. Soc. 4, 898–899 (1953)Ueki, S.: Characterization for Fock-type space via higher order derivatives and its application. Complex Anal. Oper. Theory 8, 1475–1486 (2014)Yosida, K.: Functional Analysis. Springer, Berlin (1978)Yosida, K., Kakutani, S.: Operator-theoretical treatment of Marko’s process and mean ergodic theorem. Ann. Math. 42(1), 188–228 (1941

    Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON)

    Get PDF
    In this study, an extension on the previously reported status of the COllaborative Carbon Column Observing Network\u27s (COCCON) calibration procedures incorporating refined methods is presented. COCCON is a global network of portable Bruker EM27/SUN FTIR spectrometers for deriving column-averaged atmospheric abundances of greenhouse gases. The original laboratory open-path lamp measurements for deriving the instrumental line shape (ILS) of the spectrometer from water vapour lines have been refined and extended to the secondary detector channel incorporated in the EM27/SUN spectrometer for detection of carbon monoxide (CO). The refinements encompass improved spectroscopic line lists for the relevant water lines and a revision of the laboratory pressure measurements used for the analysis of the spectra. The new results are found to be in good agreement with those reported by Frey et al. (2019) and discussed in detail. In addition, a new calibration cell for ILS measurements was designed, constructed and put into service. Spectrometers calibrated since January 2020 were tested using both methods for ILS characterization, open-path (OP) and cell measurements. We demonstrate that both methods can detect the small variations in ILS characteristics between different spectrometers, but the results of the cell method indicate a systematic bias of the OP method. Finally, a revision and extension of the COCCON network instrument-to-instrument calibration factors for XCO2, XCO and XCH4 is presented, incorporating 47 new spectrometers (of 83 in total by now). This calibration is based on the reference EM27/SUN spectrometer operated by the Karlsruhe Institute of Technology (KIT) and spectra collected by the collocated TCCON station Karlsruhe. Variations in the instrumental characteristics of the reference EM27/SUN from 2014 to 2017 were detected, probably arising from realignment and the dual-channel upgrade performed in early 2018. These variations are considered in the evaluation of the instrument-specific calibration factors in order to keep all tabulated calibration results consistent
    • …
    corecore